The UHP Ultrasound Protocol: A Novel Ultrasound Approach to the Empiric Evaluation of the Undifferentiated Hypotensive Patient

JOHN S. ROSE, MD,* AARON E. BAIR, MD,* DIKU MANDAVIA, MD,† AND DONNA J. KINSER, MD* 2010.01.12 R1李岱彤/VS鄭伯良

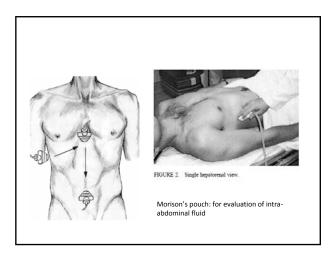
The UHP Ultrasound Protocol

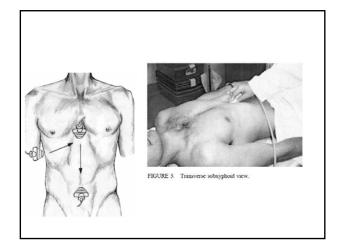
- Undifferentiated hypotensive patient
 - Found reversible condition!
- · free fluid evaluation
- qualitative cardiac evaluation
- abdominal aorta evaluation

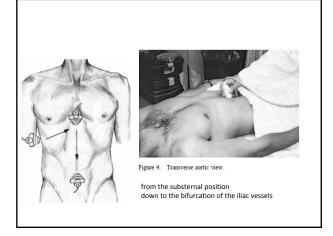
Case I

- 70 y/o female , sent to ER due to syncope
- At ER: BP: 80/palpation; HR: 120; RR: 30
- PE: normal; No trauma
- Normal ECG
- the UHP ultrasound protocol
 - aorta revealed a 6-centimeter aneurysm with associated intraluminal clot

Case II


- 40y/o woman with SLE and recurrent PE hx sent to ER due to SOB
- the UHP ultrasound protocol
 - pericardial effusion


Case III

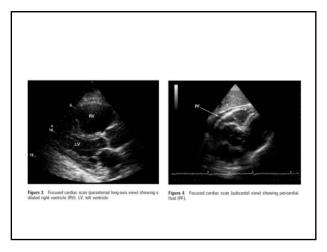

- 45y/o man, hypotension with left flank pain
- the UHP ultrasound protocol
 - Morison's pouch view showed intraabdominal fluid

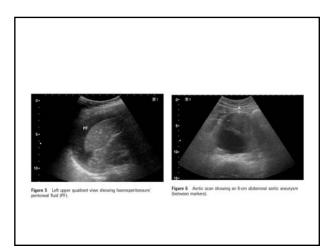
Disscussion

- Goal: for systemic evaluation of reversible and time-dependent cause of hypotension
 - hemoperitoneum, pericardial effusions, and aortic aneurysms
- May also apply to PEA patient
 - D/D: hypovulemia, pericardial effusion

Limitation

- Single Morison's pouch view: lower sensitivity
- Aortic evaluation
 - Obesity, bowel gas
 - Saccular aneurysm
- Transverse subxyphoid view: enough for detected pericardial effusion

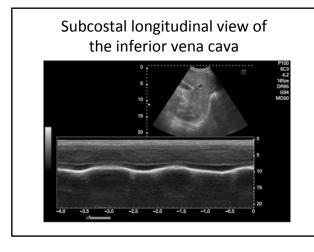

Thank you for your attention!!


Abdominal and Cardiac Evaluation with Sonography in Shock (ACES): an approach by emergency physicians for the use of ultrasound in patients with undifferentiated hypotension

PRTAtkinson, DJMcAuley, RJ Kendall, et al. Emerg Med J 2009 26: 87-91

The Abdominal and Cardiac Evaluation with Sonography in Shock (ACES) nrotocol • ¹one or more cardiac views • ² an inferior vena cava view • ³ a screen of the abdominal aorta • ⁴ Right and ⁵ left flank

view
• ⁶ pelvic view



Discussion- Hypovolamia

- IVC diameter
 - Reliable for indicator of blood loss
 - Collapsed index

Expiratory (max) diameter IVC	Collapse index (%) 100×(max — min diameter)/ max diameter	Estimated right atrial pressure <10 mm Hg >10 mm Hg	
<2 cm	>40-50%		
>2 cm	<40-50%		

- Must condider with ventricular size, wall motion and pericardial fluid
- With other view: haemoperitoneum or haemothorax, abdominal aortic aneurysm

Discussion-Obstruction

- Pericardial effsion
 - reduced IVC collapse index
 - collapse of the right side of the heart during diastole
- Heart motion, and morphology
- Embolism, thrombosis
 - IVC distension or non-collapsibility

Discussion-

- Cardiogenic
 - gross abnormalities of cardiac function and size
- Distributive
 - Hyperdynamic left ventricle, which has a 94% specificity for sepsis
- Adjuncts
 - Femoral vein, parasternal and apical views of the heart, thoracic views

Category of shock	Cardiac	IVC	Aorta	Peritoneal fluid/ blood	Pleural fluid/ blood
Septic	Hyperdynamic left ventricle	Narrow IVC	Normal	?Surgical/ gynaecological sepsis	?Pneumonia
	Hypodynamic in late sepsis	Collapses		1.7%	
Cardiogenic	Hypodynamic left ventricle	Normal	Normal	Normal	Normal
Hypovolaemic	Hyperdynamic left ventricle	Narrow IVC	?AAA	?Spontaeous splenic rupture	Normal
		Collapses		?Perforated viscous ?Gynaecological bleed	
Obstructive (cardiac tamponade)	Pericardial fluid	Variable IVC	Normal	Normal	Normal
	Diastolic collapse right ventricle	Minimal collapse			
Obstructive (pulmonary embolus)	Dilated right ventricle	Dilated IVC	Normal	Normal	Normal
		Minimal collapse			

Thank you for your attention!!

C.A.U.S.E.: Cardiac arrest ultrasound exam— A better approach to managing patients in primary non-arrhythmogenic cardiac arrest

Caleb Hernandeza, Klaus Shulera, Hashibul Hannana, Chionesu Sonyikaa, Antonios Likourezosa,*, John Marshalla,b RESUS-3413; No. of Pages 9

Introduction

- Cardiac arrest
 - VT, VF: focus on treatment
 - PEA, asystole: focus on underlying cause
- C.A.U.S.E. (cardiac arrest ultra sound examination)
 - cardiac tamponade, severe hypovolemia, pulmonary embolus, tension pneumothorax, and true asystole

Sonograph for Cardiac Tamponade

- Visualizing pericardial effusion and right chamber collapse
- D/D from tension pneumothrox
 - AHA: neck vein distention and no pulse
- · Avoid inappropriate therapy

Sonograph for Hypovolemia

- Echo: flattened right and left ventricles
- IVC diameter
 - Volume status and RV pressure
 - Flap or Collapsed IVC: hypovolemia
 - dilated IVC (>20mm): pump failure
- Avoid inappropriate therapy



Figure 3 Sonographic evaluation of the aorta in a patic from Figure 2. This abdominal aortic aneuryon was identifi as the cause of this patient's hypovolemia and PCA.

Sonograph for Pulmonary Embolus

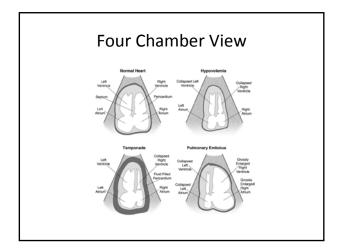
- 5% of cardiac arrest case
- Sonograph showed an engorged RV with a flattened LV
 - low to moderated sensitivity and high specificity
 - Echo would be evident after acute obstruction of more than 30% of the pulmonary arterial bed

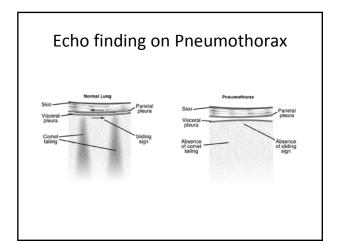
Figure 4 Four-chamber apical view of the heart in patien with suspected pulmonary embolus. Notice the massive enlarge ment of both right chambers when compared to the left side of

Figure 5 CT angiogram of the chest in a patient from Figure 4 obtained 1h after initial ultrasound image. Notice the large saddle pulmonary embolus. As a result of interventions started after initial emergency ultrasound patient survived and was discharged from the hospitals.

Sonograph for Tension Pneumothrax

Sonograph for Tension Pneumothrax


- Absent of Sliding sign
- Can diagnosed within 30s with high sensitivity and specificity
- D/D: Cardiac tamponade


Sonograph for True asystole

- Complete absence of any heart motion
- Time for terminating resuscitation
 - Blaivas et al.: 100% death rate

C.A.U.S.E

- Addresses for leading cause of cardiac arrest
- Four-chamber view
- subcostal, parasternal or apical thoracic windows
- Hypovolemia, massive PE, Cardiac tamponade
- Anteromedial views of the lung and pleura
- at the level of the second intercostal space at the midclavicular line bilaterally

Summary

- Cardiac arrest patient divided to arrhythmogenic and non-arrhythmogenic
- If no-arrythmogenic
 - First: Four chamber view for Massive PE, Cardiac tamponade and hypovolemia
 - Then: Pulmonary View for pneumothorax
- If all normal: Consider e- imbalance, hypothermia, drugs or toxins, Massive MI

Thank you for your attention!!